Diet-induced co-variation between architectural and physicochemical plasticity in an extended phenotype.

نویسندگان

  • Sean J Blamires
  • Matthew Hasemore
  • Penny J Martens
  • Michael M Kasumovic
چکیده

The adaptive benefits of extended phenotypic plasticity are imprecisely defined due to a paucity of experiments examining traits that are manipulable and measurable across environments. Spider webs are often used as models to explore the adaptive benefits of variations in extended phenotypes across environments. Nonetheless, our understanding of the adaptive nature of the plastic responses of spider webs is impeded when web architectures and silk physicochemical properties appear to co-vary. An opportunity to examine this co-variation is presented by modifying prey items while measuring web architectures and silk physiochemical properties. Here, we performed two experiments to assess the nature of the association between web architectures and gluey silk properties when the orb web spider Argiope keyserlingi was fed a diet that varied in either mass and energy or prey size and feeding frequency. We found web architectures and gluey silk physicochemical properties to co-vary across treatments in both experiments. Specifically, web capture area co-varied with gluey droplet morphometrics, thread stickiness and salt concentrations when prey mass and energy were manipulated, and spiral spacing co-varied with gluey silk salt concentrations when prey size and feeding frequency were manipulated. We explained our results as A. keyserlingi plastically shifting its foraging strategy as multiple prey parameters simultaneously varied. We confirmed and extended previous work by showing that spiders use a variety of prey cues to concurrently adjust web and silk traits across different feeding regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity

Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...

متن کامل

Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects.

Traditionally, it has been assumed that sperm are a vehicle for genes and nothing more. As such, the only source of variance in offspring phenotype via the paternal line has been genetic effects. More recently, however, it has been shown that the phenotype or environment of fathers can affect the phenotype of offspring, challenging traditional theory with implications for evolution, ecology and...

متن کامل

Linking conceptual mechanisms and transcriptomic evidence of plasticity-driven diversification.

The East African cichlid fishes provide text book examples of adaptive radiation. Diversification and speciation of cichlids associate with variation in diet and trophic morphologies among other ecological, behavioural and morphological phenotypes (Kocher 2004). Numerous case studies in cichlids reveal a role of developmental plasticity in generating jaw ecomorphs in response to variation in fe...

متن کامل

Diet-induced metabolic syndrome model in rats

Background & Objective: Risk for heart disease, diabetes, and stroke increases with the number of the metabolic risk factors. In general, a person who has the metabolic syndrome is twice as likely to develop heart disease and five times as likely to develop diabetes as someone who does not have the metabolic syndrome. High-calorie-diet rodent models have contributed significantly to the analysi...

متن کامل

Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish.

Phenotypic plasticity is the ability of organisms with a given genotype to develop different phenotypes according to environmental stimuli, resulting in individuals that are better adapted to local conditions. In spite of their ecological importance, the developmental regulatory networks underlying plastic phenotypes often remain uncharacterized. We examined the regulatory basis of diet-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 220 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2017